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Abstract— Micromagnetic simulation of domain wall mo-
tion in thin, narrow strips leads to a simplified analytical
model. The model accurately predicts the same domain
wall velocity as full micromagnetic calculations, including
dependence on strip width, thickness, and magnitude of ap-
plied field pulse. Domain wall momentum and retrograde
domain wall motion are both observed and explained by the
analytical model.

I. Introduction

The dynamics of magnetization reversal are key to the
functioning of many nanoscale magnetic devices. The ef-
fect of the shape and small dimensions of magnetic elements
on magnetodynamics are important to understand, so that
devices can be designed to provide controlled reversal and
can be optimized to meet reversal speed requirements. In
this study we first use micromagnetic simulation to exam-
ine domain wall motion in thin, narrow strips of magnetic
material. Inspired by the simulation results, we then pro-
duce a simpler analytical model that agrees with the full
micromagnetic simulation remarkably well. Both the full
micromagnetic simulation and the analytical model predict
a few unexpected behaviors.

II. Simulation

Using the OOMMF micromagnetic software package [1],
we examined domain wall motion in a strip 5 nm thick and
1250 nm long. Our simulations included strips of width
W ranging from 5 nm to 35 nm. Material parameters ap-
proximating Permalloy were chosen, saturation magneti-
zation MS = 800 kA/m and exchange energy coefficient
A = 13 pJ/m. Crystalline anisotropy was not included in
the simulation of this soft material. The OOMMF soft-
ware computes magnetization dynamics according to the
Landau-Lifshitz equation:

dm

dt
=

γ

1 + α2
Heff × m − αγ

1 + α2
m × Heff × m, (1)

where γ = −221 kHz/(A/m) is the gyromagnetic constant,
α is a dimensionless phenomenological damping parameter,
m = M/MS is normalized magnetization, and Heff is the
effective field representing the effect of all energies included
in the simulation.

¿From a prior simulation study of static domain walls in
thin, narrow strips, we expect head-to-head domains to be
separated by a transverse domain wall [2]. As in that study,
we are interested in behavior of the domain wall down the
length of the strip, and not its interactions with the ends.

To suppress edge effects, we calculate the magnetostatic
stray field produced by magnetic charges of magnitude MS

and opposite in sign to the charges present in the head-to-
head domain configuration on the ends of the strip. During
the simulation, we apply these calculated fields. The effect
is to remove the influence of the strip edges on the domain
wall at a distance to approximate the simulation of domain
wall motion along an infinitely long strip. Another useful
artifact of this technique is that the domain wall is repelled
from the strip ends by these artificial charges, keeping the
wall from running completely off the simulated element.
This is especially helpful in establishing a stable initial wall.

The initial transverse domain wall configuration is estab-
lished in the element, with the domain wall near the left
end of the strip, and allowed to relax to a stable state in
which the domain wall remains near the left end. A field
pulse is applied along the strip axis,

µ0Hx(t) = µ0Happ(1 − cos 2πft), 0 < t < 1ns (2)

where f = 2 GHz, so that the 1 ns pulse includes one full
cosine period. Pulse magnitudes µ0Happ from 1 to 10 mT
were applied. In response to each applied field pulse, we
observe the transverse domain wall moving to the right.
After the pulse has ended, the domain wall continues to
move with a momentum of its own. Simulations with α = 0
demonstrate that the domain wall motion is primarily a
precessional effect.

By observation, we see that the transverse domain wall
holds its shape throughout the simulation, and the domains
remain uniformly magnetized along the strip axis, so the
velocity of the wall can be simply derived from the average
x component of magnetization of the whole element,

v(t) =
L

2
d < mx(t) >

dt
. (3)

With no damping, the domain wall momentum continues
to move the wall at constant velocity. When damping is
included, the domain wall comes to a stop some time after
the pulse ends, although for large enough applied field pulse
magnitudes, the wall velocity is observed to accelerate after
the pulse ends before slowing to a stop.

Figure 1 graphs constant wall velocities observed in the
zero-damping case for several values of strip width W and
pulse magnitude µ0Happ. For each W , there is a pulse
magnitude that maximizes wall velocity. For wider strips,
a lesser pulse magnitude produces the maximum velocity
and that maximum velocity is greater.
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Fig. 1. Domain wall velocity for various strip widths and applied
field pulse magnitudes

Another set of simulations was performed using an ap-
plied field step rather than an applied field pulse. The
remarkable observation was that for large enough applied
fields in the positive x direction, the domain wall velocity
becomes negative part of the time, leading to a retrograde
motion of the domain wall.

III. Domain Wall Structure

As a first step toward deriving an analytical model to
explain these simulation results, we examine the structure
of the domain wall itself. First we note that the exchange
energy enforces a smoothness of spatial variation of mag-
netization. Also, the thickness and width of the strip are
small compared to the spatial rate of change in magneti-
zation, so to a good approximation, magnetization can be
considered uniform in those dimensions. That is, the mag-
netization can be considered to vary only along the x axis,
M(x, y, z) = M(x).

There are two competing energies that give rise to the
domain wall. Exchange energy prefers to spread the wall
along the entire length of the strip. The shape anisotropy
of the strip, however, prefers magnetization aligned with
the strip axis, which tends to expand the domains at the
expense of the wall. The actual width of the domain wall
comes from a balancing of these two energies, in a manner
precisely analogous the the well-known one-dimensional do-
main wall model where exchange and crystalline anisotropy
energies are balanced.

Most of the shape anisotropy energy comes from charges
on the edges of the strip due to the transverse component
of magnetization in the domain wall. As an approximation,
we neglect other sources of magnetostatic energy (including
bulk charges), and computed the demagnetization energy
as

E = −µ0MS

2

∫
V

my(x)Hy(x, y, z)dxdydz, (4)

where Hy(x) arising from the surface charges is

Hy(x, y, z) =
∫ L

0

∫ T

0
my(x′) MS{f(x − x′, y − W, z − z′)

−f(x − x′, y, z − z′)}dz′dx′,

where
f(x, y, z) =

y

[x2 + y2 + z2]
3
2
. (5)

After rearrangement and simplification

E =
µ0M

2
S

2

∫ L

0

∫ L

0

my(x)my(x′)Φ(x − x′)dxdx′, (6)

where Φ is integrable and has most weight near zero, so
acts approximately as a Dirac delta function. Following
the same calculus of variations analysis as for crystalline
anisotropy energy,

E = K

∫ L

0

m2
y(x)dx, (7)

leads to the expression for an effective shape anisotropy
constant for a given strip width W and thickness T ,

Km = µ0M2
S

2 { 1 − 2
π

tan−1(
W

T
)

+
1
2π

T

W
log(1 + (

W

T
)2)

− 1
2π

W

T
log(1 + (

T

W
)2)} (8)

Following the classical analysis of one-dimensional models
of domain walls, this approximation predicts the domain
wall width to be

a = π

√
A

Km
. (9)

¿From the simulations, we can compute a different estimate
of the domain wall width of the magnetization state,

â = L(< my >2 + < mz >2)
1
2 . (10)

The â estimate from simulations are consistently slightly
larger (10 - 20 %) than the predicted value a, presumably
due to the neglecting of bulk charges.

IV. Analytical Model

Having determined the expected domain wall width, we
use it to construct a simplified view of the moving domain
wall. Consider a partition of the strip into three regions:
the two domains, each uniformly magnetized, and the do-
main wall uniformly magnetized in the transverse direction
over a length a of the strip. The magnetization in the do-
mains is parallel to the applied field pulse, so they do not
react to it, either in precession or in damping. The domain
wall region does respond. Damping toward the applied
field causes the domain wall to rotate toward the positive
x axis. Precession about the applied field causes the do-
main wall magnetization to tilt out of the plane of the strip
at an angle θ. After the magnetization tilts out of plane, it
is no longer anti-parallel to the demagnetization field. The
component of demagnetization field perpendicular to the
magnetization, H⊥

D is

H⊥
D = MS(Nz − Ny) cos θ sin θ, (11)



where Ny and Nz are the demagnetizing factors of the a×
W ×T region containing the domain wall [3]. For non-zero
θ, H⊥

D is also non-zero, and the domain wall magnetization
will precess around it, contributing to the rotation toward
the positive x axis. The complete expression for velocity
of the domain wall predicted by this simple model is

v = (γ/π)(H⊥
D + αHapp)a, (12)

After the applied field pulse returns to zero, it is the pre-
cession about the demagnetizing field that sustains the mo-
mentum of the domain wall motion. This phenomenon of
domain wall momentum is completely analogous to the mo-
mentum predicted by a one-dimensional model of a Bloch
wall [4]. In both cases it is precession about a local demag-
netization field that sustains wall motion. Damping will
slowly draw energy from the system, and eventually bring
the domain wall to a stop.

It is clear from these expressions that for any particu-
lar strip geometry, there is a tilt angle θ that maximizes
domain wall velocity. The time rate of change of the tilt
angle is

θ′ = γ(Happ − αH⊥
D ). (13)

For the applied field pulses, the total tilt angle θ achieved
by the end of the pulse is proportional to the area under
the applied field pulse. It is also clear that larger veloci-
ties are expected as (Nz −Ny) grows larger; that is, as the
width-to-thickness ratio of the strip increases. These rela-
tionships explain the features of the micromagnetic simula-
tion results in Fig. 1. When the applied field pulse creates
a tilt angle θ greater than that which maximizes velocity,
the model predicts that after the pulse, as damping de-
creases θ, the wall velocity will actually increase before it
decreases and the wall comes to a stop, just as observed in
micromagnetic simulation.

This analytical model can also explain the response of
domain walls to a constant applied field. When the applied
field is small enough, its tendency to increase the tilt an-
gle θ will eventually be exactly balanced by the tendency
of the damping to push θ back to zero. Specifically, for
Happ < αMS(Nz − Ny)/2, a constant θ is reached and the
wall moves at the constant velocity determined by that tilt
angle.

to retrograde domain wall motion observed in response
For larger Happ, θ will continue to grow as precession

about the applied field continues past the z axis (θ = π/2).
Once θ exceeds π/2, both precession and damping com-
bine to accelerate the magnetization back into the plane.
Though precession continues clockwise around H⊥

D , the
transverse direction of magnetization is reversed, so that
precession moves the wall in the reverse direction. That is,
the domain wall velocity becomes negative. As θ exceeds
π, the magnetization passes through the plane of the strip,
and the direction of H⊥

D is reversed, causing the precession
direction to reverse, yielding another reversal of wall di-
rection. The same pattern repeats as the precession about
the applied field continues for π < θ < 2π. The number
of cycles of domain wall direction reversal is exactly twice
the number of precession rotations about the applied field.
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Fig. 2. Comparison of the predictions of the analytical model with
the results computed by a full micromagnetic simulation. Response of
a transverse domain wall to an applied field ramped up to a constant
value. µ0Happ = 25 mT, W = 15 nm, α = 0.001.
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Fig. 3. Comparison of the predictions of the analytical model with
the results computed by a full micromagnetic simulation. Response of
a transverse domain wall to an applied field ramped up to a constant
value. µ0Happ = 25 mT, W = 15 nm, α = 0.01.

Figures 2 and 3 depict how well the simple analytical
model succeeds in predicting the same domain wall position
as a function of time as a full micromagnetic calculation.
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